If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-39x-126=0
a = 1; b = -39; c = -126;
Δ = b2-4ac
Δ = -392-4·1·(-126)
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-39)-45}{2*1}=\frac{-6}{2} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-39)+45}{2*1}=\frac{84}{2} =42 $
| 2(x-3)/5=x-3/5 | | 3x^2-121x-378=0 | | X^2-17x=90 | | 3/4x-2=1/3x+1/2 | | 1.2y+5.3=7y-3.7 | | 62-2n=18 | | r2=96 | | |x+2|=4 | | -4(4-4n)=112 | | -195=-5(3-6x) | | 6(7a+1)=90 | | -7(1+4a)=217 | | -1=-7+v/22 | | r/4+1=0 | | -65=10p+5 | | 49=264-w | | -5=5+10x | | 6x-22=48 | | -6-6x=-90 | | -y+161=266 | | 208-w=281 | | 161=-u+229 | | 9+((5x)/2)=4 | | 9x2-72=0 | | 7(x+7)=-77 | | 2x²+7x-3=0 | | -19=n/13 | | 6.5x+3-5.5x=0 | | 14z^2-14z=28 | | 2x+10-15+3x=15 | | 2=5+a | | 103=-2(7n+6)+3 |